
La cogeneración y los combustibles renovables en la transición energética

Jaume Roqueta, Raimon Argemí y Olga Monroy

- 1. ¿Cuál es la combinación de tecnologías renovables que permite llegar a la plena descarbonización y que minimiza el impacto en el territorio?
- 2. ¿Qué procesos de transformación energética deben priorizarse?
- 3. ¿Qué papel juegan los gases renovables en este reparto?

Este estudio permite concluir que, con unos objetivos razonables de crecimiento en tecnologías renovables, la plena descarbonización es posible y está completamente en nuestras manos o, mejor dicho, en las del Regulador.

Sola	r + Eólica & Hidro	Escenario
1	30 TWh + 90 TWh	Capacidad instalada actual (2024)
2	100 TWh + 140 TWh	Empezamos a tener un exceso de energía eléctrica, destinado a la producción de H ₂ para almacenamiento diario. No existe hidrógeno excedentario para gases sintéticos, se consumirá durante la noche para generar electricidad y calor industrial.
3	220 TWh + 140 TWh	Autosuficiencia energética. Necesitamos 275 TWh de biocombustibles, valor razonable para autoabastecerse con bio- combustibles en España (biomasa: 100TWh, biogás: 150 TWh y residuos urbanos: 50TWh).
4	240 TWh + 140 TWh	El excedente de energía eléctrica permite la producción de metano sintético, para almacenamiento estacional.
5	400 TWh + 140 TWh	(Prácticamente) escenario "todo eléctrico" (solar + eólica + hidráulica)
6	550 TWh + 140 TWh	Producimos un excedente de H2, para exportación a Europa

Situación actual

Las tecnologías presentes en el sistema energético tienen eficiencias muy bajas, con un promedio inferior al 60%.

Sector	Energía Primaria	Energía Final	Rendimiento
Electricidad	501 TWh	250 TWh	50%
Transporte	375 TWh	150 TWh	40%
Climatización	173 TWh	156 TWh	90%
Calor Industrial	166 TWh	150 TWh	90%
Pérdidas / transformación /	144 TWh		
usos no energéticos	144 I VVII		
TOTAL	1.359 TWh	706 TWh	56%

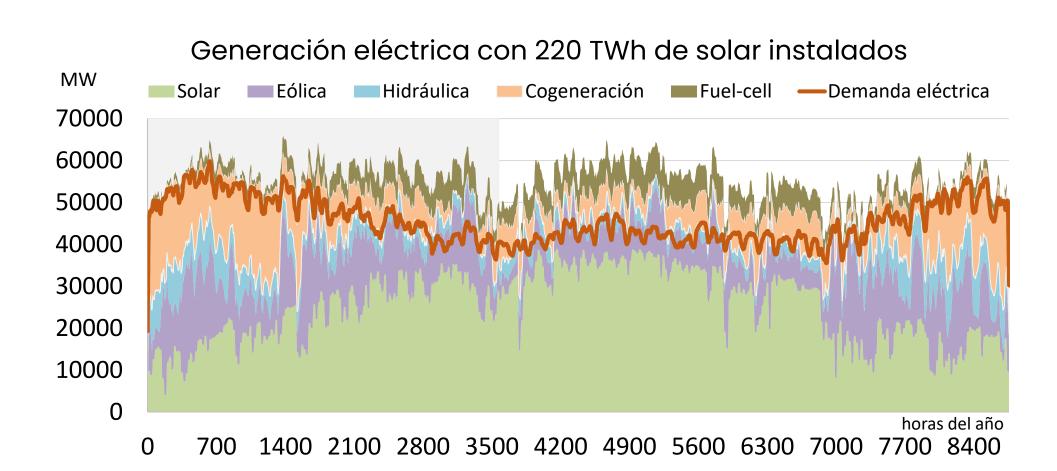
Modelando el sistema en base a 220 TWh/año de generación fotovoltaica la demanda de combustibles cae por debajo de los 300 TWh: un valor que permite autoabastecerse con bio-combustibles. Incrementar la capacidad solar no evita la necesidad de usar biocombustibles, incrementa considerablemente el coste de inversión y hace que aparezca hidrógeno excedentario estacional.

Metodología

Curvas de demanda horaria eléctricas y térmicas actuales

Incorporación de nuevas demandas: Coche eléctrico, Bombas de calor & redes de calor industrial

Curvas de demanda horaria eléctrica y térmica futuras


Escenario con una capacidad máxima de solar, eólica e hidráulica Análisis de exceso & déficit de energía eléctrica

Cobertura final de la demanda eléctrica y térmica, incluyendo: Cogeneración Combustibles Calderas Fuel Cell

Electrolizadores renovable sintéticos convencionales

Balance optimizado

		Electricidad (GWh)	Calor (GWh)	E. Primaria (GWh)	Eficiencia
DEMANDA	Electricidad	254.060			
	Vehículos (no pesados)	100.000			
	Térmico		306.639		
	Bomba de calor	44.834	-156.921		
	TOTAL	398.894	149.718		
GENERACIÓN	Fotovoltaica	220.000		220.000	100%
	Eólica & Hidráulica	140.000		140.000	100%
	Cogeneración	87.299	124.713	249.426	85%
	Calderas		19.645	21.828	90%
	Electrólisis	-85.336			
	Pilas de combustible	36.932	25.852		
	Pérdidas térmicas		-20.492		
	TOTAL	398.895	149.718	631.254	87%

El incremento de la eficiencia energética permite reducir la demanda de energía a casi la mitad: cogeneración, coche eléctrico, acumulación térmica y bomba calor.

